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Introduction

Many real-world phenomena evolve in time
but experience fluctuations or randomness:

•The movement of small particles in a fluid

•Genetic mutations (alleles) in a population

•Market prices for stocks and commodities

•The activity of neurons in the human brain
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In mathematics, the areas of Probability
and Stochastic Analysis provide the tools
from which we model such random systems.

Brownian motion

One of the key concepts is Brownian motion
which models the random movements of a
point particle with the normal distribution.

Brownian motion is named after the botanist
Robert Brown who observed pollen grains in
water exhibiting small random fluctuations.

The theory of Brownian motion was later
developed by Albert Einstein in one of his
famous Annus Mirabilis papers of 1905.

 

Time 

Mathematically speaking, Brownian motion
is the unique stochastic process W such that

1.W = {Wt}t≥0 evolves continuously in time.

2.W has random fluctuations which satisfy

Wt −Ws ∼ N
(
0, t− s

)
,

for s ≤ t (N is the normal distribution).

3.W has independent fluctuations. That is,
(Wt −Ws) and (Wv −Wu) are independent
for u ≤ v ≤ s ≤ t.

Stochastic modelling
with Brownian motion

Brownian motion is a simple model that (on
its own) cannot describe complex systems.

Therefore, it is often used as a building block
to create more powerful stochastic models.

One approach is to view Brownian motion as
the source of randomness within a system.

This type of mathematical model is known as
the stochastic differential equation (SDE):

dyt = µ(t, yt) dt + σ(t, yt) dWt ,

where yt is the state of the system at time t
and the functions µ and σ govern the small
deterministic and random changes of y.

SDEs have widespread applications in STEM.

Brownian motion and
random polynomials

Our research is based on a recent discovery
that connects Brownian motion with another
part of classical mathematics: polynomials.

Theorem 1 (Brownian motion is a random
polynomial with some independent noise
Foster et al. (2020) and Habermann (2020)).
For n ≥ 1, we have

W = W n + Zn,

where W n is a polynomial with degree n and
Zn is an independent process defined on [0, 1]

with mean zero E[Zn] = 0 and Zn
0 = Zn

1 = 0.

 

Since Theorem 1 is well known when n = 1,
we have focused on the quadratic and cubic
polynomial decompositions of W (n = 2, 3).

 

Application to SDE simulation

Newton’s second law models a particle that
moves in a field with potential f : Rd→ R as

d2x

dt2
= −∇f (x).

By adding friction and noise into Newton’s
second law, we obtain Langevin dynamics:

dxt = vt dt,

dvt = −γvt dt−∇f (xt) dt +
√

2γ dWt .

As well as being a classical model in physics,
Langevin dynamics has also been applied to
sampling problems within machine learning.

As a result, developing numerical algorithms
which can accurately simulate the Langevin
dynamics remains an active area of research.

 

By leveraging our new-found knowledge of
Brownian motion and (cubic) polynomials,
we designed a novel algorithm for Langevin
dynamics with state-of-the-art performance!
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